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I. INTRODUCTION 

Graphics processing units (GPUs) are commonly used 
for graphics and general-purpose (GPGPU) computation. 
Currently, NVIDIA’s GPUs, through its CUDA framework 
for GPGPU programming, are ubiquitous for high-
performance computing. Another class of GPUs, with a 
central processing unit (CPU) and a GPU integrated on the 
same chip, is commonly used in laptops, desktop computers, 
and low-power servers. While they are not designed to 
outperform discrete GPUs due to the power, area, and 
thermal constrains [1], there is a need to better understand 
the performance of a processor with an integrated GPU for 
floating-point intensive applications. The study helps us 
better understand the characteristics of hardware and 
software development tools, and the benefit of offloading 
such applications to an integrated GPU.  

Toward that end, we choose a floating-point intensive 
kernel, port the kernel with a vendor-neutral framework, and 
evaluate the optimizations of the kernel on a server with a 
CPU and a GPU integrated on a chip. Specifically, we focus 
on the geodesic distance kernel. It has both arithmetic and 
trigonometric functions, and is widely used in geographical 
information system (GIS) for computing the distance 
between two locations on the earth. We develop and 
optimize the kernel written in Open Computing Language 
(OpenCL), an open standard for writing portable programs 
on CPUs, GPUs, and other types of hardware accelerators 
[2]. We show the impact of compiler’s optimization options 
on kernel performance on an Intel® Iris™ GPU. We also 
compare the performance and energy consumption of the 
OpenCL applications executing on the processor. We 
summarize our key findings as follows: 
    • When fast relaxed math is enabled for building the 
single-precision floating-point intensive kernel, the compiler 
can take advantage of the transcendental functions 
implemented on the GPU. However, such functions are not 
available for double-precision operations. Compared to the 
baseline in which optimizations are disabled, the floating-
point optimizations improve the performance of the single- 
and double-precision floating-point kernels by 9.4X and 
4.8X on an Intel® GEN9 integrated GPU, respectively. 
    • Using a floating-point multiply-and-add OpenCL kernel 
to characterize the floating-point performance with respect to 
arithmetic intensity, we determine the arithmetic intensity 
required to achieve peak floating-point performance. 

The report is structured as follows. Section II summarizes 
the compute architecture of an Intel® integrated GPU. 
Section III presents the optimized OpenCL kernel in details 
and the analysis of the compiler optimizations of the kernel. 
In Section IV, we show the experimental results on the GPU. 
Section V summarizes related studies, and Section VI 
concludes the report. 

II. BACKGROUND 

While mainstream integrated GPUs are produced by 
ARM, Intel®, and NVIDIA, the report is focused on the 
architecture of an Intel® integrated GPU. This kind of GPU 
connects to CPU cores via a ring interconnect, and they share 
main memory with CPU cores. To reduce data access latency 
from main memory, an integrated GPU maintains a memory 
hierarchy comprised of register files, instruction and data 
caches. Some products include an embedded DRAM 
(eDRAM) behind last-level cache to further reduce latency 
to system memory for higher effective bandwidth. The 
building block of the graphics compute architecture is the 
execution unit (EU). It is a combination of simultaneous 
multi-threading and fine-grained interleaved multi-threading. 
Each EU can run seven threads concurrently to hide memory 
access latency. Each thread has 128 SIMD-8 32-bit registers. 
Each EU can co-issue to four instruction processing units 
(IPUs) including two floating-point units (FPUs), a branch 
unit for branch instructions, and a message unit for memory 
operations, sampler operations, and other longer-latency 
system communications. Each FPU supports both floating-
point and integer operations, and can execute up to four 32-
bit floating-point or integer operations. However, only one 
FPU provides support for transcendental math functions and 
double-precision floating-point operations. 

From the perspective of an OpenCL kernel, multiple 
kernel instances, which are equivalent to OpenCL work-
items, are executed simultaneously within a hardware thread. 
For a SIMD-16 compile of a kernel, 112 kernel instances can 
be executing concurrently on an EU. If there is a divergent 
branch in one or more kernel instances, an EU’s branch unit 
keeps track of such divergence and generates masks to 
control which instances need to execute the branch.  

Arrays of EUs are organized as a subslice. The number of 
EUs per subslice depend on the generation of compute 
architecture. Each subslice contains a thread dispatcher unit 
and supporting instruction caches. In addition, it includes a 
sampler unit for sampling texture and image surfaces, and a 
data port memory management unit for a variety of general-
purpose buffer accesses, scatter/gather operations, as well as 
shared memory accesses. Subslices are grouped into slices. 
In general, a slice has three subslices, but the number of 
slices depend on products and their generations. A slice 
integrates additional logics for thread dispatch routing, 
banked L3 data cache, banked shared memory, and fixed 
function logic for atomics and barriers.  

III. KERNEL IMPLEMENTATION 

A. Geodesic Distance Kernel in OpenCL 

The geodesic distance kernel calculates the distance 
between two geographic coordinates on the earth’s surface. 



Earth’s shape is modelled as an ellipsoid. The shortest 
distance between two points along the surface of an ellipsoid 
is along the geodesic. The methods for computing the 
geodesic distance are available in GIS, software libraries, 
standalone utilities, and online tools [3]. The OpenCL kernel 
is based on the open-source implementation [ 4 ] of the 
solution to the inverse geodesic problem [5]. 

In the Appendix, we show the N-Dimensional Range 
kernel in OpenCL-style pseudocode. “FP” and “FP4” 
represent a generic floating-point data type and its vector 
data type, respectively. The OpenCL vector type can pack a 
pair of coordinates into a vector, each of which is 
represented as latitude and longitude in degree. While 
distance calculation using double precision is preferred for 
accuracy, we extend it to include single precision in our 
study. The kernel arguments “total” and “offset” are needed 
for data streaming on a discrete GPU. When a GPU and a 
CPU are integrated, streaming is not needed to overlap 
communication and computation. Hence, they are equal to 
the global work size and zero, respectively. The kernel can 
be logically divided into three building blocks. The second 
block (lines 26 to 43) implements an iterative method to 
compute the geographical distance between two given 
points. The kernel is floating-point intensive with more than 
100 arithmetic and trigonometric floating-point operations. 

B. Analysis of Floating-point Optimizations 

When building an OpenCL kernel, we can enable the 
OpenCL-specific optimization options to make the compiler 
attempt to improve the performance and reduce code size of 
a kernel. In this study, we focus on three optimization 
options for building an OpenCL kernel [ 6 ]: disable all 
optimizations (no-opt), default (default), and fast relaxed 
math (opt). We want to have a better understanding of the 

impact of each option on the code size and the number of 
floating-point arithmetic instructions at the assembly level.  

We use a command-line utility (“ioc64”) in Intel® SDK 
for OpenCL to generate an assembly file from an OpenCL 
kernel. The utility allows a user to specify build options for a 
kernel. While generating an assembly file, the utility prints a 
summary of device information and memory usage of a 
kernel. The utility can also build an OpenCL kernel offline 
as opposed to at runtime. 

Tables I lists the impact of the build options upon the 
number of floating-point instructions for the single- and 
double-precision floating-point geodesic distance kernels 
targeting an integrated GPU. LOC counts the number of 
lines (including labels) in the assembly file generated from 
the OpenCL kernel. Compared to the kernel with the 
optimizations disabled or with the default option, relaxing 
the single-precision floating-point operations can reduce the 
LOC by approximately 10X and more. We attribute the 
significant reduction in code size to the instantiation of three 
trigonometric functions for the sine and cosine operators in 
the kernel. These extended math functions take advantage of 
the extended math capability provided by the underlying 
FPU. In addition, all divide instructions (div) are replaced 
with the inverse instructions (inv) to reduce the overhead of 
floating-point divide.  

On the other hand, relaxing the double-precision floating-
point operations can reduce the LOC by at most 1.6X. The 
result suggests that there are no special processing units for 
double-precision floating-point trigonometric functions in an 
FPU. For both precisions, the divide instructions are replaced 
with the inverse instructions to reduce the overhead of 
floating-point divide. In addition, the compiler is able to use 
the built-in “mad” and “rsqrt” functions for efficient 
computations. Overall, the compiler is better at optimizing a 

TABLE I.  IMPACT OF THE OPTIMIZATIONS OF THE GEODESIC DISTANCE KERNEL ON THE NUMBER OF INSTRUCTIONS IN THE ASSEMBLY 

Name Note Float32 

no-opt. 

Float32 

default 

Float32 

opt. 

Float64 

no-opt. 

Float64 

default 

Float64 

opt. 

LOC Lines of code 2144 1657 145 5969 4519 3837 

mul Multiplication 218 220 41 530 484 486 

add Addition 381 258 15 1275 859 474 

mad Multiply-and-add 196 201 26 963 908 679 

div Division 11 8 0 0 0 0 

inv Inverse 2 2 8 32 26 22 

sqrt Square root 2 2 2 0 0 0 

rsqrt Reverse square root 2 2 3 8 8 8 

sin Sine 0 0 3 0 0 0 

cos Cosine 0 0 3 0 0 0 

cmp Compare 108 89 3 89 86 79 

sel Select 186 194 4 34 26 35 

mov Move 311 160 24 1480 957 917 

shl Shift left 89 86 2 235 124 124 

shr Shift right 138 96 0 138 132 132 

or Logical OR 121 120 1 132 125 125 

and Logical AND 73 68 0 237 203 191 

 



single-precision kernel than a double-precision kernel.  

IV. EXPERIMENT  

A. Setup 

In our experiment, the server has an Intel® Xeon® E5-
1585 v5 CPU running at 3.5 GHz. The CPU has four cores 
and each core has two threads. The theoretical memory 
bandwidth is 34.1 GB/s. The integrated GPU is Skylake 
GT3e, Generation 9.0. The specifications for the GPU are 
summarized in Tables II. The official thermal power draw of 
the GPU is not available. For the GPU compute runtime [7], 
the device version is OpenCL 2.1 NEO and the driver 
version 19.43.14583. The maximum work-group size (local 
size) is 256. Empirical results show that the runtime can 
select an appropriate work-group size; therefore we have the 
OpenCL implementation determine how to break the global 
work-items into appropriate work-group instances. We use 
Red Hat Enterprise Linux 7 (version 7.6) and the kernel is 
5.3.1. We build the OpenCL application with the g++ 
compiler, version 4.8.5. 

To minimize data transfers between the integrated GPU 
and the CPU, we make use of the zero-copy buffers which 
can reduce the communication cost and energy consumption. 
We measure the total elapsed time of executing an OpenCL 
application on a target device. This includes the initialization 
of OpenCL runtime, offloading the kernel to the GPU, and 
reading back the GPU results. We use “ioc64” to build the 
OpenCL kernel offline as opposed to at runtime, and choose 
the minimum execution time of 32 runs.  

 The input coordinates are retrieved from Maxmind’s 
world cities database that includes city, region, country, 
latitude, and longitude. In our experiment, we extract 221 
cities with unique locations around the world, and choose six 
cities in five continents (Bombay, Melbourne, Waltham, 
Moscow, Glasgow, and Morocco) from which the kernel 
computes distances to each of 221 cities. 

B. Performance Characterization 

Two key attributes of computer graphics computation are 

data parallelism and independence, which can be combined 
in a single concept known as arithmetic intensity [8]. In this 
study, we choose a floating-point multiply-and-add kernel as 
shown in Listing 1 to evaluate the number of floating-point 
operations performed by the kernel relative to the amount of 
memory accesses that are required to support those 
operations. It should be pointed out that we use this kernel to 
estimate the performance of the floating-point operations 
with respect to the arithmetic intensity on the GPU. Our 
focus is not the maximum floating-point performance that 
can be achieved on the GPU. The global work size is 227, and 
the work-group size is set by the OpenCL runtime. Each 
work-item iterates over a “for” loop to accumulate the sum 
of the product of the content of the array element at index “i” 
and the value of the loop index. The parameters “TYPE” and 
“N” in the OpenCL kernel are set at compile time. From the 
OpenCL kernel perspective, there are two single-precision 
floating-point operations for each work-item when “N” 
equals one and “TYPE” is “float”. 

Figures 1 and 2 show the giga floating-point operations 
per second (GFLOPS) with respect to arithmetic intensity for 
the single- and double-precision floating-point multiply-and-

 

 

Fig 1. Giga floating-point operations per second (GFLOPS) with 

respect to arithmetic intensity for the single-precision (float32) 

floating-point multiply-and-add kernel 

TABLE II.  THE GPU INFORMATION 

Parameter Iris™ Pro Graphics P580  

Technology 14 nm 

Base Freq. 0.35 GHz 

Max Dynamic Freq. 1.15 GHz 

Embedded DRAM 128 MB 

Slices/Subslices 3/9 

Execution Units  72 

Max Memory Size 64 GB 

Thermal Power Draw N/A 

 

1  kernel void multiply_add ( 

2    global const TYPE *restrict a,  

3    global       TYPE *restrict c ) 

4  { 

5    int i = get_global_id(0); 

6    TYPE sum = 0; 

7    for (int j = 0; j < N; j++) 

8    { 

9      sum += a[i] * j; 

10   } 

11   c[i] = sum; 

12 } 

Listing 1. The OpenCL reduction kernel with the parameters 

“TYPE” and “N” set at compile time 

 



add kernel on the GPU, respectively. The GFLOPS levels off 
at approximately 1000 and 150 for the single- and double-
precision kernels, respectively. The “peak” single-precision 
GFLOPS is more than five times higher than the “peak” 
double-precision GFLOPS when the arithmetic intensity is 
above 150. The performance trends show that achieving the 
“peak” GFLOPS on the GPU requires a minimum arithmetic 
intensity of 50.  

C. Performance Comparison 

The relationship between the GFLOPS and arithmetic 
intensity indicates that it is beneficial to offload a floating-
point intensive kernel to the GPU. Ultimately, we need to 
know the raw performance of the kernel implementations.  

Table III shows the elapsed time in millisecond (ms) on 
the GPU with respect to the three optimization options, and 
the performance speedup in terms of execution time 
(SpeedupT) and precision (SpeedupP). The single-precision 
kernel is only about 2.6X faster than the double-precision 
kernel when all optimizations are disabled. However, the 
single-precision floating-point optimizations can achieve 5X 
speedup over the optimized double-precision floating-point 
operations. On the other hand, the floating-point 
optimizations reduce the baseline execution time by 9.4X 
and 4.8X for the single- and double-precision kernels, 
respectively. The performance improvement shows that it is 
important to apply the floating-point optimizations whenever 
possible. The comparison also suggests that more double-
precision floating-point optimizations at the hardware level 

are needed for high-performance computing applications 
which require double-precision floating-point operations for 
accuracy and stability.   

We look at GPU kernel execution per code line with the 
GPU In-kernel Profiling in Intel® VTune™ Amplifier [9]. 
The profiling tool can estimate the GFLOPS of a kernel via 
GT-Pin [ 10 ]. When the floating-point optimizations are 
enabled, the reported GFLOPS is 422 and 79 for the single- 
and double-precision floating-point kernels, respectively. 
Based on the specification in Table II, the theoretical 
maximum GFLOPS of the GPU is 1324.8 for single 
precision and 331.2 for double precision. Hence, the kernel 
can achieve 32% and 24% of the theoretical single- and 
double-precision floating-point performance, respectively. 
Compared to the “peak” performance measured using the 
multiply-and-add kernel, the kernel can achieve 43% and 
53% of the “peak” single- and double-precision GFLOPS, 
respectively. We attribute low performance efficiency to the 
overhead of executing complex trigonometric functions in an 
iterative loop. 

D. Energy Comsumption 

We measure the energy consumption of running the 
OpenCL applications using Linux’s “perf” interface [11]. 
Figure 3 shows the energy in Joules of the event types 
“cores”, “gpu”, “pkg”, and “ram” when running the OpenCL 
application in single- and double-precisions on the processor. 
For a compute-bound application, we expect that the DRAM 
energy consumption is the lowest. Using the floating-point 
optimizations reduce the package energy by 3.9X and 2.8X 
for the single- and double-precisions, respectively. On the 
other hand, the double-precision floating-point operations 
consume about 3.1X, 5.5X, 3.6X, and 2.8X more energy 
than that of the single-precision floating-point operations for 
the four energy events, respectively.      

V. RELATED WORK 

In [1], the authors presented the architectures of Skylake® 
and Kabylake® integrated GPUs, and characterized the 
performance of the two GPUs through a collection of micro-
benchmarks. Although it is the first work that takes a 

TABLE III.  MINIMUM EXECUTION TIME (MILLISECOND) OF 32 RUNS ON 

THE GPU. THE GLOBAL WORK SIZE IS 221. 

Precision Time  

No-opt. 

Time  

Default  

Time  

Opt. 

SpeedupT 

Float32 113 38 12 9.4 

Float64 290 184 60 4.8 

SpeedupP  2.6 4.8 5  

 

 

Fig 2. Giga floating-point operations per second (GFLOPS) with 

respect to arithmetic intensity for the double-precision (float64) 

floating-point multiply-and-add kernel 

 

Fig. 3. The energy consumption (cores, GPU, package, DRAM) 

of running the OpenCL application with the un-optimized, 

default, and optimized kernels executing on the GPU. 
 



detailed look at Intel® integrated GPU architectures, the 
paper does not provide the insight of floating-point 
performance with respect to arithmetic intensity. Compared 
to the extensive studies on NVIDIA’s discrete GPUs, there 
are limited studies on Intel’s integrated GPUs [12, 13, 14, 
15 , 16 ] due to the limitations in performance and 
programming framework. Compared to the previous work, 
we add the analysis of compiler optimizations, the 
characterization of floating-point performance, and the 
performance evaluation of the single- and double-precision 
floating-point implementations on the GPU. 

VI. CONCLUSION 

We use the geodesic distance kernel in OpenCL as a case 
study to better understand the performance of a floating-
point intensive kernel on a processor with a CPU and a GPU 
integrated on the same chip. Although an integrated GPU is 
not designed to outperform a discrete GPU, our experimental 
results show that the floating-point optimizations can 
improve the raw performance of the single- and double-
precision floating-point kernels by 9.4X and 4.8X on the 
GPU. In the meantime, it can reduce the package energy by 
2.8X for the single precision, and 3.9X for the double 
precision. The GFLOPS with respect to arithmetic intensity 
shows that the arithmetic intensity plays an important role in 
improving the number of floating-point operations per 
second. Because of the hardware architecture of an FPU, the 
compiler can generate efficient instructions for the single-
precision transcendental functions in the kernel whereas 
there are no special function units for the double-precision 
floating operations. We expect that technological advances 
will improve the performance of double-precision floating-
point operations from the hardware level. 
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APPENDIX  GEODESIC DISTANCE KERNEL IN OPENCL 
 

1  kernel void  

2  gd (global FP4 *restrict coordinate, 

3      global FP  *restrict distance, 

4      const uint          total, 

5      const uint          offset )  

6 {   

7    i = get_global_id(0) + offset ;   

8    if ( i >= total ) return ; 

9    lat1 = coordinate[i].s0 ; 

10   lon1 = coordinate[i].s1 ; 

11   lat2 = coordinate[i].s2 ; 

12   lon2 = coordinate[i].s3 ; 

 13   rad_lon1 = lon1[i] * TO_RADIAN ; 

 14   rad_lat1 = lat1[i] * TO_RADIAN ; 

 15   rad_lon2 = lon2[i] * TO_RADIAN ; 

 16   rad_lat2 = lat2[i] * TO_RADIAN ; 

17   tu1 = COMPRESSION_FACTOR * sin ( rad_lat1 ) / cos ( rad_lat1 ) ; 

18   tu2 = COMPRESSION_FACTOR * sin ( rad_lat2 ) / cos ( rad_lat2 ) ; 

 19   cu1 = 1.0 / sqrt ( tu1 * tu1 + 1.0 ) ; 

 20   su1 = cu1 * tu1 ; 

 21   cu2 = 1.0 / sqrt ( tu2 * tu2 + 1.0 ) ; 

 22   s = cu1 * cu2 ; 

 23   baz = s * tu2 ; 

 24   faz = baz * tu1 ; 

 25   x = rad_lon2 - rad_lon1 ; 

26   do { 

27     sx = sin ( x ) ; 

28     cx = cos ( x ) ; 

29     tu1 = cu2 * sx ; 

30     tu2 = baz - su1 * cu2 * cx ; 

31     sy = sqrt ( tu1 * tu1 + tu2 * tu2 ) ; 

32     cy = s * cx + faz ; 

33     y = atan2 ( sy, cy ) ; 

34     sa = s * sx / sy ; 

35     c2a = - sa * sa + 1.0; 

36     cz = faz + faz ; 

37     if ( c2a > 0.0 ) cz = -cz / c2a + cy ; 

38     e = cz * cz * 2.0 - 1.0 ; 

39     c = ( ( -3.0 * c2a + 4.0 ) * FLATTENING + 4.0 ) * c2a * FLATTENING / 16.0 ; 

40     d = x ; 

41     x = ( ( e * cy * c + cz ) * sy * c + y ) * sa ; 

42     x = ( 1.0 - c ) * x * FLATTENING + rad_lon2 - rad_lon1 ; 

43   } while ( fabs ( d - x ) > EPS ) ; 

44   x = sqrt( ELLIPSOIDAL * c2a + 1.0 ) + 1.0 ; 

45   x = ( x - 2.0 ) / x ; 

46   c = 1.0 - x ; 

47   c = ( x * x / 4.0 + 1.0 ) / c ; 

48   d = ( 0.375 * x * x - 1.0 ) * x ; 

49   x = e * cy ; 

50   s = 1.0 - e - e ; 

51   s = ( ( ( ( sy * sy * 4.0 - 3.0 ) * s * cz * d / 6.0 - x ) * 

                 d / 4.0 + cz ) * sy * d + y ) * c * POLAR_RADIUS ; 

52   distance[i] = s ; 

53 } 
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